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b ]/ 2, [ a + b ]/ 2, c/2). These four surfaces are mapped 
onto another, for example, by the symmetry 
operations listed in Table 1. 

The genus is 9 for MC6 as well as for MC7 surfaces. 

7. Minimal surfaces oMC5 (double catenoids) 

Rectangular nets 44 of twofold axes (case 26) are 
defined by orthorhombic group-subgroup pairs of 33 
types. Only 12 of them are compatible with catenoid- 
like surface patches and with the respective minimal 
balance surfaces oP, a family of orthorhombically 
distorted P surfaces. 

Quite similarly as described above for MC5 sur- 
faces, the fusion of two such catenoids results in a 
double catenoid, a surface patch of an oMC 5 surface. 
The surfaces of the family oMC5 may be regarded 
as orthorhombically distorted MC5 surfaces. The 
family oMC5 comprises the surfaces of the family 
MC5 as a limiting case (a = b). 

oMC5 surfaces are compatible with group- 
subgroup pairs of only two of the 12 types mentioned 
above: Pccm-P2/m and P222-P2.  The inherent sym- 
metry of oMC5 surfaces is Pccm-P2/m. 

Analogously to MC5 surfaces each set of rec- 
tangular nets of twofold axes may generate eight 
congruent oMC5 surfaces; but in contrast to MC5 
surfaces all these oMC5 surfaces have identical inher- 
ent symmetry. They can be mapped onto another by 
symmetry operations of the intersection group 
N~(Pccm) c~ N E ( P 2 / m ) =  Pmmm(a/2, b/2, c/2) 
(cf. Table 1). 

8. Common properties of M C  surfaces 

For all minimal balance surfaces built up from multi- 
ple catenoids two layers of such catenoids exist per 
c-translation period. The central axes of the multiple 
catenoids are the same for the catenoids of different 

layers. Multiple catenoids from different layers with 
the same central axis are oriented differently. 

If the generating linear net of an MC surface 
consists of triangular nets of twofold axes six MC 
surfaces exist which are complementary to each other. 
In the case of quadrangular nets eight complementary 
MC surfaces occur. Each vertex of a triangle or a 
quadrangle corresponds to two congruent MC sur- 
faces. Equivalent vertices give rise to congruent sur- 
faces, non-equivalent ones to non-congruent surfaces. 
Each of these surfaces is complementary in addition 
to two congruent minimal surfaces built up from 
catenoids (except MC5 surfaces with a = 21/2c and 
oMC5 surfaces with a = b =21/2c). The use of the 
capital letter C for the designation of complicated 
new minimal surfaces which are complementary to 
known ones is therefore misleading [cf. Schoen 
(1970): C(H),  C(P), C(D) ;  Fischer & Koch (1987): 
C(S), C ( Y )  etc.], and should be avoided in the 
future. 

Minimal surfaces with multiple catenoids as sur- 
face patches exist only within a certain range of the 
axial ratio 0 <  c/a<_ c/a(max.). As for minimal sur- 
faces consisting of catenoids or branched catenoids 
the upper limits c/a(max.) are unknown. It has been 
shown by soap-film experiments that multiple 
catenoids allow a larger distance between neighbour- 
ing nets of twofold axes than the corresponding 
simple catenoids. 
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Abstract 

The Bloch-wave method for reflection diffraction 
problems, primarily electron diffraction as in reflec- 
tion high-energy electron diffraction (RHEED) and 
reflection electron microscopy (REM), is developed. 

0108-7673/89/020174-09503.00 

The basic Bloch-wave approach for surfaces is re- 
viewed, introducing the current flow concept which 
plays a major role both in understanding reflection 
diffraction and determining the allowed Bloch waves. 
This is followed by a brief description of the numeri- 
cal methods for obtaining the results including 
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specific results for GaAs near to the [010] zone axis. 
A number of other Bloch-wave phenomena are also 
discussed, namely resonance diffraction and its 
relationship to internal and external reflection and 
variations in the boundary conditions and Bloch- 
wave character, splitting of diffraction spots due to 
stepped surfaces, which can be completely explained, 
and the reflection equivalent of thickness fringes. 

I. Introduction 

It is well known that reflection high-energy electron 
diffraction (RHEED) and reflection electron micros- 
copy (REM) are powerful tools for investigating sur- 
face structure. As Menadue (1972) pointed out, it is 
not unreasonable to expect that some of the 
techniques developed for transmission electron 
diffraction and imaging can be extended to study and 
understand the structures of crystal surfaces. 
Although techniques for understanding reflection 
diffraction of electrons based upon modified low- 
energy electron diffraction (LEED) programs have 
been developed by a number of authors (e.g. Colella 
& Menadue, 1972; Moon, 1972; Maksym & Beeby, 
1981), and Bloch-wave approaches using slices per- 
pendicular to the surface (e.g. Schuman, 1977) and 
a method based upon the multislice approach by Peng 
& Cowley (1986) have been discussed, a complete 
understanding has yet to be attained. For instance, it 
is not clear that any of the modified LEED approaches 
can be used for surface defects. Most of the Bloch- 
wave approaches have only used simplified systematic 
conditions and the multislice approach uses a top-hat 
incident wave with smooth edges to model an incident 
plane wave and as such suffers from problems in 
attaining a static solution and edge effects from the 
sides of the top-hat incident wave. 

In principle, a very powerful method for under- 
standing electron diffraction is the Bloch-wave 
method which was used widely in understanding 
diffraction from perfect and imperfect crystals. One 
of the main advantages of the Bloch-wave method is 
that it allows access to analytical methods which can 
lead to substantial physical insights which are often 
not readily available in strictly numerical methods, 
and there are numerous methods based on Bloch 
waves which, for instance, can be used as methods 
for calculating the image contrast from surface defects 
(e.g. Schuman, 1977). In addition, for thicker crystals, 
as is the case for Bragg diffraction, it can be much 
faster than numerical methods such as multislice. 

This paper will give a detailed description of both 
the analytical theory and numerical solutions of the 
Bloch-wave approach in the Bragg case, in part recap- 
ping some of the earlier development of workers such 
as Metherell (1972), and in part developing new work 
particularly on the boundary value problem and the 
splitting of diffraction spots due to surface steps. 

Whilst many workers have tackled this problem using 
simplified Bloch-wave models and systematic orienta- 
tions, we have here developed the method for more 
complicated many-beam conditions which more 
closely resemble experimental conditions. In the pro- 
cess of this analysis we also bring out the importance 
of reflectivity via the current flow in terms of under- 
standing the physics of reflection. Based upon this 
approach we then briefly discuss dynamical explana- 
tions of surface resonance, spot splitting due to sur- 
face steps and the reflection analogy of thickness 
fringes. A more detailed analysis of spot splitting due 
to surface steps (Marks & Ma, 1988b) and a combina- 
tion of Bloch and multislice approaches to rigorous 
calculations of surface defect scattering (Ma & Marks ,  
1989) will be presented elsewhere. 

2. Bioch formulation in a general case 

The general theory of dynamical electron diffraction 
in a crystal was first proposed by Bethe (1928), and 
a systematic review of the theory can be found in the 
paper by Metherell (1972). We will briefly recap this 
primarily to define our notation. In a periodic poten- 
tial field, the electron wave has the form of a Bloch 
wave, which can be expanded as the Fourier series 

~bJ(r) = ~. C~ exp [27ri(kJ + g ) .  r] (1) 
g 

where cJg and k j + g are the coefficients and the wave 
vectors of the plane-wave components and j indexes 
the Bloch wave. Substituting the Bloch-wave form 
into Schr6dinger's equation and using a Fourier 
expansion of the crystal potential V(r), we obtain 

~ {(1-6gh)Ug-h+6gh[K2-(kJ+g)2]}C~=O (2) 
g 

where K = 2meE/ h2 + Uc and Ug = 2meVg/ h z. Equa- 
tion (2) can also be written in matrix form as 

K 2 - ( k J + g )  2 U g _  h . . .  

Uh-g K 2 -  (k j + h) 2 . . .  
. . . . . .  K 2 - ( k J + l )  2 

= 0  

o r  

HC=O. (3) 

The condition for nontrivial solutions of (3) is 

Det H -- 0. (4) 

Equation (4) is the dispersion equation which deter- 
mines the E - k  relation in the crystal and has 2n 
solutions where n is the total number of Fourier 
coefficients of the potential used. Using an xyz coor- 
dinate system, we define the coordinates such that 
the xy plane is parallel to the surface and the z axis 
inwards, in which case kx and ky are determined by 



176 BLOCH-WAVE S O L U T I O N  IN THE B R A G G  CASE 

the boundary  condit ions (see below). Equations (3) 
and (4) can be solved using a quick eigenvalue search- 
ing method (e.g. Faddeeva,  1959) which gives 2nkz 
values and the corresponding eigenvectors Cg. 

The total electron wave inside the crystal can then 
be written as 

4'(r) = E eJq/(r) (5) 
J 

where e j are the coefficients of  the excited Bloch 
waves which,  together with the reflection coefficients 
of  the outgoing waves in vacuum, are determined by 
the boundary  conditions. 

3. Boundary conditions 

The electron wave in the vacuum can be written 

O(r)  = exp (2zri X . r) + Ro exp (2-n'iko. r) 

+ ~  Rg exp (2rrike,. r) (6) 
e ,  

where the first term is the incident wave, the second 
is the back-reflected or specular  reflected wave and 
the third the back-diffracted waves with ko and ke, the 
wave vectors of  the corresponding waves, and Ro and 
Rg the reflected wave ampli tudes,  k0 and ke, are related 
to the incident  wave vector X by the following 
equations in the Laue case: 

ko = X - 2Xz (7) 

kg = X - 2Xz + g-I- Sg 

= k o + g + S g  (8) 

where X-- is the projection of the incident wave vector 
on the surface normal (z axis), and Sg is the excitation 
error which is taken along the z axis. Fig. 1 shows 
the coordinat ion set up for our computat ional  
development  in the Bragg case. 

Consider ing energy conservation and conservation 
of the interfacial  momentum on the boundary,  we 
obtain 

kox = Xx; koy = Xy (9) 

ke ,~=xx-g~;  ke,y=xy-g.v (10) 

ko= = -X= (11) 

ke,z=-[X2-(xx-gx)2-(X,,-g~)2]'/2 (12) 

for the reflected waves, and 

k J = x x ;  k~=X.v (13) 

for the Bloch waves. It should be noted that kg: c a n  

be imaginary,  if  the value inside the square root is 
negative• This happens  when the surface normal does 
not touch the dispersion sphere, which means  that 
there exist evanescent waves in the outgoing wave 
which propagate along the surface but carry no 
energy• (Numerica l  results indicate that these external 
evanescent waves are quite common.)  

Matching across the surface leads to the two 
sets of  equations for the Bloch- and reflected-wave 
ampli tudes:  

• . 

8og + Re, = ~, eJCJg (14) 
J 

ao,-Re,='#'.(kJz+g~)eJC~/ke,.. (ke,.#O). (15) 
J 

There are apparent ly  now 4n unknowns  con- 
strained by 2n boundary  conditions,  which is an 
insoluble problem. In order to solve this there are 
two approaches.  One can use a slab model,  invoking 
a second boundary  parallel  to the incoming surface 
of the crystal which will provide a further n boundary  
condit ions as suggested by Moon (1972) and Colella 
-(1972). Provided that the second surface is well sepa- 
rated from the first and that the crystal is absorbing 
this method will be perfectly valid. The second 
method,  which has been briefly described in an earlier 
note (Marks & Ma, 1988a), is to use the current flow 
to obtain n boundary  conditions. (We can use current 

a" b* y* a b c a ~ ' ) ,  1 IUg~ 
. . . .  L I  p .  l 

k~=Xx; ky =XyJ 3 

-1 B . C .  

I- 

8 I kg'z I 

2 
I Ug,-gml 

i 1 m 
. 

1 
l j = 1,.•..-2n 

~ S~' • ~ ~<0 

(J) 
• ,_(J3. 0 

= n  

S t o p  

H9 IRgl ICU'l ] 
1 

lO 

i g 

(:]:)(F)-- ,~ RgEXP[ i2 /r  (ff+O).~] 
g 

'mag" ] [ °'"r"c"°°l ! 'nt"ns" ' I ,,n.,,sis 
Fig. 1. An outline of the computer program for calculating the 

n-beam Bloch-wave solution in the Bragg case. a, b, c, a,/3 and 
3' are the unit-cell parameters, the matrices O, D, I and B are 
the same as those given by Metherell (1972) and the other terms 
are defined in the text. 
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Table 1. Listing of the Bloch waves for a nine-beam 
calculation of GaAs 

The beam direction is along the (010) Laue zone axis tilted by 
6.5 mrad along the [101] direction. For the absorption treatment, 
the imaginary parts of the Fourier potential coefficients are taken 
as 10% of their real parts. The upper part of the table compares 
the real and imaginary components of the wave vectors and current 
flow, the lower the excitation amplitudes. 

Without absorption 
Eigenvalues Current flow 

1 ( 0.733, 0"000) 0'381 
2 ( -0 '733,  0"000) -0"382 
3 ( 0"599, 0"000) 0"264 
4 (-0"599, 0"000) -0"275 
5 ( 0"354, 0"149) 0"000 
6 ( 0"354,-0"149) 0"000 
7 (-0"354, 0'149) 0"000 
8 ( 0"245, 0"097) 0"000 
9 ( 0.245, -0.097) 0.000 

10 ( -0 .354 , -0 -149 )  0"000 
11 (-0"245, 0"097) 0"000 
12 ( -0"245, -0"097)  0"000 
13 ( 0"000, 0-149) 0.000 
14 ( 0"115, 0"054) 0.000 
15 ( 0"000,-0"149) 0"000 
16 ( 0'115, -0"054) 0"000 
17 (-0"115, 0"054) 0"000 
18 ( -0"115, -0"054)  0"000 

With absorption 
Eigenvalues 

( 0.733 0.016) 
( - 0 . 7 3 3 - 0 . 0 1 6 )  
( 0.601 0.031) 
( - 0 . 6 0 1 - 0 . 0 3 1 )  
( 0.378 0.151) 
( 0 . 3 3 0 - 0 . 1 5 1 )  
( -0 .330  0.151) 
( 0.262 0.092) 
( 0-228 -0.107) 
( -0 .378 , -0 .151)  
(-0.228 0.107) 
( -0 .262 , -0 .092 )  
( 0.024 0.151) 
( 0.145, 0.070) 
( -0 .024 , -0 .151)  
( 0.086 -0.057) 
(-0.086 0.057) 
( -0 .145 , -0 .070)  

Current flow 

0.381 
-0.383 

0.265 
-0.276 

0.021 
-0.289 

0-290 
0.347 

-0.055 
-0.021 

0.388 
-0.087 

0.260 
0.909 

-0.024 
-0 .106 

1.020 
-0.070 

Excitation amplitudes 
1 0.187x 10 -2 0.140 x 10 -2 
3 0"538 0"396 
5 0"125 x l0 - I°  0"383 x l0 -11 
7 0"611 x 10 - I°  0"207 x l0 -11 
8 0"655 0"637 

11 0"0452 0"0347 
13 0"381 x 10 -13 0"149 x 10 -13 
14 O'180x 10 -2 0"196× 10 -2 
17 0"705 × 10 -4 0"598 × 10 -4 

flow, group velocity, probability flow or energy flow 
essentially interchangeably since these all differ only 
by a scalar term.) The point is that the probability 
current flow on the entrance surface z - -0 ,  which is 
parallel to the real component of the vector normal 
to the dispersion surface and is given by 

S =  Real part of (he~m) ~ C~ 2(kJ +g) ,  (16) 
g 

determines the path of the energy carried by the 
electrons. The Bloch waves which physically exist in 
the crystal must satisfy Sz > 0 and k~ must have a 
non-negative imaginary component, these two condi- 
tions being in fact identical when absorption is 
included (Marks & Ma, 1988a). The two conditions 
eliminate n Bloch waves and therefore make the 
boundary condition problem soluble. [The general- 
ized Hill's-determinant method suggested by Moon 
(1972) would appear to be equivalent, but substan- 
tially more complicated.] 

The concept of current flow introduced here is one 
which goes beyond the boundary-value problem and 
is very useful in understanding the physics of reflec- 
tion diffraction. Several points should be stressed. 

Table 2. Values of  g (gy =0), kgz and the reflection 
coefficient IRgl for the example in Table 1 

The strongly excited evanescent waves outside the surface should 
be noted. 

gx gz 
1 -0-3546 -0.3546 
2 -0-3546 0-0000 
3 -0.3546 0.3546 
4 0.0000 -0.3546 
5 0.0000 0.0000 
6 0.0000 0.3546 
7 0-3546 -0-3546 
8 0-3546 0.0000 
9 0.3546 0.3546 

k g z  

( 0-0000 -0.3071) 
( 0-0000 -0-3071) 
( 0.0000 -0.3071) 
(-0.1773 0.0000) 
(-0-1773 0.0000) 
(-0.1773 0.0000) 
( 0.0000 -0-3071) 
( 0.0000 -0.3071) 
( 0.0000 -0.3071) 

IRgl 
0.441 
0"00764 
0" 104 
0"0334 
0-393 
0-0024 
0"441 
0.00764 
0" 104 

Firstly, kt and Sz do not smoothly follow each other 
at all, and it is dangerous to use kz to explain any 
physical phenomena since it would be misleading. As 
a concrete example, Table 1 shows numerical results 
for a GaAs (001) surface, illustrating the relationship 
between the signs of krz, kit and St both with and 
without absorption. Table 2 shows for the same 
example the wave vectors and reflection coefficients 
which indicate the role of external evanescent waves. 
It should also be appreciated that St depends upon 
the real part of the derivative of the dispersion surface, 
i.e. both the real and imaginary components play a 
role. Another important point is that St for the total 
reflected or transmitted wave is the (independent) 
sum of the different Sz contributions from the separate 
plane or Bloch waves. Finally, in the absence of 
absorption conservation of probability indicates that 
V.  S = 0 (Marks & Ma, 1988a). [It should be pointed 
out that this conservation of current flow can also be 
derived if we treat (14) and (15) as vector equations 
and take the dot product.] Therefore, if we monitor 
the current flow into the crystal, we are automatically 
monitoring the reflectivity. The importance of this 
will become apparent later when we consider the 
variations in wave vectors and current flow as a func- 
tion of the incident-beam direction. 

The unknowns can now be uniquely determined 
by writing in matrix form 

e JI (17) 

where the matrices are 

c:lC  c: I (18) . . .  c :  

A= 

1 1 2 2 k z Co/koz k z Co/ko~ 
(k~z+gz)C~/kgz (k~+gz)C2/kgz 

. . .  k'~ Cg/ koz [ 

. . .  (k'~+gz)Cg/kgz 

(19) 
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with I the unit  matr ix and  

j =  

so that 

1 
0 

o 

(20) 

e = 2 ( C + A ) - ' J  (21) 

R = ½ ( C - A ) e .  (22) 

4. Numerical development and results 

To solve numer ica l ly  (Fig. 1) we assume that the 
crystal is perfect and that the surface plane is exactly 
perpendicu la r  to the p lane  of the Laue zone. To 
calculate the crystal potential  we employed  the rele- 
vant parts of  a multisl ice s imulat ion program used at 
Northwestern University. This potential  was conver- 
ted to give the 2n x 2n matr ix which was solved as 
indicated in § 2. For the eigenvalue searching,  we 
used the general  complex  matr ix EISPACK package 
which also gives the eigenvectors C~. The z com- 
ponent  of  the energy flow of  each Bloch wave is then 
evaluated to reduce the possible Bloch waves, as 
outl ined in § 3. The excitat ion and reflection coeffi- 

(a) (b) 

GaAs(O01) 

0i - -  42mrad 

(c) 

Fig. 2. Calculated results for GaAs (001) with the incident beam 
along the [010] azimuth with a tilt of 42 mrad for 100 keV 
electrons: (a) intensity map of reflected wave; (b) intensity map 
of the Bloch wave in the crystal; (c) diffraction pattern. External 
surface evanescent waves are not included in (c). 

cients are then solved, using complex l inear equat ion 
routines in the L I N P A C K  program package. Finally,  
we can construct the total Bloch wave in the crystal 
and total reflected wave in the vacuum from all pre- 
vious calculated parameters ,  writing the wave out in 
a form that the existing imaging routines originally 
written for mult is l ice s imula t ion  can handle .  Util izing 
the constructed waves, we can either display ideal 
diffraction patterns and images or analyze the beam 
intensities and  wave intensities• It should be men- 
t ioned that at this stage we discriminate between the 
evanescent  waves outside the surface and the out- 
going waves, so that we do not obtain artifacts from 
these evanescent  waves. 

Fig. 2 shows as an example  results for intensity 
maps  of both the reflection wave in vacuum and the 
Bloch wave in the crystal. These are shown over 5 x 5 
unit cells, i.e. 28.2 x 28.2 A. The incident  energy is 
100 keV and  the incident  glancing angle is 42 mrad.  
The beam is along the [010] azimuth. The diffraction 
pattern is a direct Fourier  t ransform of the reflected 
wave and shows seven spots corresponding to 49 
excited beams  in the crystal forming a semicircle. 
Because the calculat ion is for a perfect surface, the 
reflected spots are sharp as dictated by m o m e n t u m  
conservation. 

5. Dynamical phenomena in Bragg reflection 

In this section we will very briefly discuss some of 
the dynamica l  effects in reflection diffraction. 

5.1. Surface resonance condition 

Intensity enhancements  of  a part icular  diffraction 
spot have been extensively studied in LEED and 
RHEED.  First noticed by Kikuchi  & Nakagawa 
(1933) and more recently by Miyake,  Kohra  & Takagi 
(1954), McRae  (1966), McRae  & Caldwell  (1967), 
Miyake & Hayakawa  (1970), Ichimiya,  Kambe  & 
Lehmpfuhl  (1980) and Marten & Meyer -Ehmsen  
(1985), the intensit ies o f the  specular  and Bragg reflec- 
ted spots are anomalous ly  enhanced  when the spot 
intersects a Kikuchi  line. In part icular  Marten & 
Meyer -Ehmsen  (1985) have suggested a method of 
unders tanding  resonance in terms of  surface bound  
states. 

From a Bloch-wave viewpoint ,  there are in fact two 
different effects, both of  which occur near  to the 
resonant  condit ion,  which lead to various changes in 
the net reflectivity. These correspond to total internal  
reflection of  Bloch waves or total external reflection 
of  diffracted waves. It should be noted that for elec- 
trons a solid is polyrefr ingent  since the S for each 
Bloch wave leads to a different refractive index, and 
we have n diffracted waves so we can expect a large 
number  of  in te rna l /ex te rna l  reflection conditions.  
Analysis  based solely upon  total internal reflection 
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due to the mean inner potential is not adequate since 
refraction is determined by the behavior of S, not the 
wave vector. We will discuss the two effects with 
reference to Figs. 3-7 which show respectively the 
rocking curve for the reflected wave, the total reflec- 
tivity, the wave vector of some of the reflected waves 
and the real, imaginary and current flows of the three 
major Bloch waves, all for GaAs near to a [110] zone. 

The first effect is total reflection of a particular 
diffracted wave, i.e. when the incident angle is varied 
a diffracted wave changes from an escaping plane 
wave to a trapped evanescent wave on the outside of 
the surface. This occurs when the condition kgz = 0 
is satisfied for the particular Bragg incident angle, 
consistent with the analysis of McRae (1966), McRae 
& Caldwell (1967) and Miyake & Hayakawa (1970), 
and can be seen by comparing Figs. 3, 4 and 5. There 

A 
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n, 1.00 ~ _  ~ J  o 
0 

I0 .50 

 o.oo . . . . . .  . . . . . . .  
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Fig. 5. Plots of  the vacuum wave vectors as a funct ion of  incident 
angle. When the curves are decreasing the wave vector is purely 
imaginary, one of the resonance peaks is zero, and when the 
wave vector is increasing the value is fully real. 
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Fig. 3. Specular-beam rocking curves calculated for GaAs (001) 
surface with and without absorption for 100 keV and the (010) 
azimuth. 
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Fig. 4. Total reflectivity as a function of beam incidence angle for 
the same conditions as in Fig. 3. 
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Fig. 6. Plots for the strongest Bloch wave. (a) The real and 
imaginary components of the wave vector kr and ki respectively 
and the current flow Sz, (b) The excitation amplitude. 
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are peaks in both the specular reflected beam intensity 
and the total reflectivity at the condition where a 
reflected beam is transiting from evanescent to escap- 
ing, i.e. has a zero imaginary component, although 
these are not the strongest features in Figs. 3 and 4. 

The second effect is when some of the Bloch waves 
within the crystal change from propagating into the 
crystal to being evanescent in character, i.e. total 
internal reflection of Bloch waves occurs. This occurs 
in the region where the normal to the Ewald sphere 
is lying in the 'band gap' between the Bloch-wave 
dispersion surfaces. Since an evanescent wave has 
Sz =0, conservation of current indicates that this 
should lead to a maximum in the reflectivity. This 
can be seen by comparing Figs. 6 and 7 with the total 
reflectivity in Fig. 4, for instance the zero in the current 
flow in Fig. 6(a) at about 18.5 mrad and the corre- 
sponding peak in Fig. 4. 

Although the above arguments provide some 
rationalization for the various peaks in the net reflec- 
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Fig. 7. As for Fig. 6, but for the next strongest Bloch wave. 

tivity, they do not give a complete explanation. This 
indicates that the idea that total internal or external 
reflection is responsible for the intensity maxima, one 
which has been around in the literature for a long 
time, is not sufficient. It is apparent from the curves 
showing the excitations of the different Bloch waves 
as a function of angle that there are very large vari- 
ations in these which are due to the boundary condi- 
tions rather than simply to changes in S arising from 
variations in the real and imaginary components of 
the wave vectors. For instance, the maximum in the 
total reflectivity at about 23.5 mrad correlates well 
with the zero excitation of the Bloch wave shown in 
Fig. 6(b). From this we would conclude that although 
resonance effects based upon total internal or external 
reflection are important, they do not explain all the 
intensity variations and many of these must be due 
to some combination of the boundary conditions and 
the changing character of the Bloch waves. 

5.2. Splitting of  Bragg spots 

Equations (9)-(12) contain one interesting feature: 
the z component of the reflected wave vectors is 
completely independent of gz. This means that the 
wave vectors of all the reflected plane waves generated 
by reciprocal-lattice points on a row perpendicular 
to the surface will overlap for a perfectly flat surface. 
The escaping diffracted beams form a semicircle con- 
sistent with experimental results, but each spot is 
actually the overlap (coherent sum) of a series of 
spots. 

This initially strange result is the source of the 
phenomenon of Bragg spot splitting, first observed 
by Kikuchi & Nakagawa (1933). These authors 
showed that Bragg spots often split into two or more 
intensity maxima, depending on the azimuthal angle 
of the crystal. More recently, Pukite, Van Hove & 
Cohen (1984), Pukite & Cohen (1987) and Hsu & 
Cowley (1983) have shown that this splitting is con- 
sistent with a periodic array of steps. 

If the surface deviates slightly from the normal to 
the Laue-zone plane due to surface steps, the surface 
normal will be slightly oblique to the Laue-zone plane. 
Therefore the row of reciprocal-lattice points is no 

M 

hlh 2 - - - - -  

Fig. 8. Construction illustrating the dynamical origin of the split- 
ting of the Bragg spots. MN is the surface,, the surface normal 
and X the incident wave vector. 
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longer normal to the surface, so the overlapped spots 
will split into a series of small spots. The mechanism 
is shown in Fig. 8. By simple geometry, it can be 
shown that the spot splitting is related to the beam 
direction with respect to the crystal lattice and surface 
normal and identical to the kinematical result. For 
reasons of space this analysis will be presented in 
more detail elsewhere (Marks & Ma, 1988b). It pro- 
vides diffraction pattern details which are exact in 
terms of the positions of the spots (e.g. Pukite & 
Cohen, 1987) and show fairly good agreement in 
terms of the spot intensities. 

As such, this spot splitting analysis is the dynamical 
equivalent of kinematical step spot splitting and the 
Bragg equivalent of wedge spot splitting in trans- 
mission (e.g. Cowley, 1981). However, it should be 
noted that this analysis also indicates that the width 
of a REM image of a step should vary linearly with 
the step separation (ignoring the effects of defocus 
and other imaging parameters).  This appears to be 
in conflict with existing experimental results, and we 
therefore suspect that there must be additional contri- 
butions from strain fields around the steps at least 
when imaging well separated steps. This will be dis- 
cussed in more detail elsewhere. 

5.3. Extinction distance 

The extinction distance is defined as the periodicity 
of the wave intensity oscillation in the crystal (Hirsch, 
Howie, Nicholson, Pashley & Whelan, 1977). Just as 
in transmission, the intensity oscillates as a function 
of depth within the crystal as shown in Fig. 9 for 
different incident angles and imaginary components 
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Fig. 9. Intensity maps for GaAs crystal at different incident glanc- 
ing angles and with different absorption for 100 keV electrons 
and a (010) azimuth. The size of each picture is nine unit cells 
by nine unit cells, i.e. 50.57 x 50.57/~,. 

to the potential for a GaAs (001) surface. The first 
column of images in Fig. 9 shows the results without 
absorption, the middle column with an imaginary 
component  of 1% and the last column with a 10% 
component.  As the imaginary component increases, 
the oscillations decay faster within the crystal, as 
would be expected, and the Bloch waves in the crystal 
have significant intensity only in the range of 10-15 A 
for the 10% case. It should be noted that in the 
two-beam approximation we obtain an extinction dis- 
tance of 12.64 A, which is fairly close to the numeri- 
cally calculated values. Similar oscillations can be 
found in some of the results of Peng & Cowley (1986), 
although it should also be pointed out that the 
intensity oscillations here have a fairly substantial 
period, not the smaller period observed by these 
authors. 

6. D i s c u s s i o n  

One feature of the Bragg solutions that differs from 
the more common Laue solutions is the central role 
of the current flow. As mentioned earlier, current flow 
is both additive and conserved across the entrance 
surface of the crystal, and is therefore a simple 
method of understanding the physics of the problem. 
It is also parallel to the real part of the gradient of 
the dispersion surface, which can be readily sketched, 
permitting qualitative understanding. Provided that 
we follow this approach,  the Bragg solutions are not 
really all that different from the Laue solutions. 

One feature that merits a little discussion is momen- 
tum conservation which in the Laue case for a perfect 
crystal leads only to semicircles of diffraction spots, 
not to the two-dimensional patterns which are experi- 
mentally found in many REM experiments. For a 
perfect crystal there is no mechanism for momentum 
transfer except normal to the surface or by reciprocal- 
lattice vectors in the plane of the surface. This can 
be seen from a simple kinematical argument if one 
considers the intersection of the Ewald sphere with 
the one-dimensional rel-rods normal to the crystal 
surface from each reciprocal-lattice spot. However, 
in real specimens the crystal is vibrating and there 
are inelastic excitations of  both plasmons and 
phonons which can provide other momentum trans- 
fers. In a Bloch-wave model we can consider these 
as leading to vertical transitions, which indicates that 
phonons are the most likely source of two-dimen- 
sional diffraction since phonons lead to intra-branch 
scattering as is well established for small-angle scat- 
tering in transmission. 

Some limits to the Bloch-wave method should also 
be mentioned, the most notable of which is for 
phenomena such as surface relaxations or reconstruc- 
tions. Neither of these can be incorporated very con- 
veniently into the BIoch-wave model. However, there 
are many well established Bloch-wave techniques 
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which can be used for defective structures, so it should 
be possible to use these for relaxations or recon- 
structions, as well as features such as surface steps. 
Another approach which we intend to exploit in the 
near future is to employ the Bloch-wave solutions as 
the incoming wave for a multislice calculation v~hich 
should allow us to calculate very accurately diffrac- 
tion effects at surface steps, for instance. Limitations 
of the Bloch-wave approach aside, it does yield sub- 
stantial physics, for instance the explanation of step 
spot splitting described in § 5.2. 
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Abstract 

Direct measurements of triplet phase relationships 
for non-centrosymmetric light-atom organic struc- 
tures with medium-size unit cells are reported. The 
phase information can be extracted from the three- 
beam profiles of a Renninger 0-scan experiment. The 
measurements were carried out with a special 0-circle 
dittractometer installed on a rotating Cu-anode gen- 
erator. The incident-beam divergence is reduced to 
0.02 ° . The experimental results confirm the theoretical 
considerations of paper I of this work [HiJmmer & 
Billy (1986). Acta Cryst. A42, 127-133]. As triplet 
phases of +90 ° can be distinguished, the absolute 
structure can be determined unambiguously. The 
measurements show that the triplet-phase-dependent 
interference effects may be superposed on phase- 
independent Umweganregung or AuJhellung effects. 
By a comparison of the 0-scan profiles of two cen- 
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trosymmetrically related three-beam cases, the triplet 
phases of which have opposite signs, it is possible to 
evaluate the phase-independent effects and to deter- 
mine the value of the triplet phase with an accuracy 
of at least 90 ° . 

I. Introduction 

In paper I of this work (Hiimmer & Billy, 1986) the 
use of 0-scan profiles near a three-beam case for the 
experimental determination of structure-invariant 
triplet phase sums was discussed in particular for 
non-centrosymmetric crystal structures. The idea of 
exploiting the three-beam interference to obtain infor- 
mation on the X-ray reflection phases is based on the 
fact that in an interference experiment the resultant 
amplitude depends not only on the amplitudes of the 
interfering waves but also on their phase difference 
(Lipscomb, 1949; Post, 1977). 
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